物体追跡 yolov8_tracking を試してみる【Python】

AI
スポンサーリンク

スポンサーリンク

はじめに

前回は Yolov5 を使用した物体追跡について説明しました。

今回は Yolov8 を使用した物体追跡について説明します。公式の github はこちらです。

前提条件

前提条件は以下の通りです。

  • Windows11
  • Python3.9
  • PyTorch == 1.12.1+cu113

プログラムの準備

早速、準備していきます。

git clone -b v9.0 https://github.com/mikel-brostrom/yolov8_tracking.git

yolov8 もクローンします。

git clone https://github.com/ultralytics/ultralytics.git

プログラムの実行

以下のコマンドで PC カメラでトラッキングを実行できます。

python .\track.py --source .\MOT16_eval\track_all.gif --yolo-weights yolov5su.pt --save-vid

yolov5s の最新モデルは yolov5su となったそうです。

上記を実行すると、以下の出力が得られます。

yolov8 の方が、非常に簡単にデモを実行することができました。

引数なしで実行できるプログラムに変更

track_custom.py として、以下のように変更しました。

import argparse
import cv2
import os
# limit the number of cpus used by high performance libraries
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"

import sys
import platform
import numpy as np
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # yolov5 strongsort root directory
WEIGHTS = ROOT / 'weights'

if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
if str(ROOT / 'yolov8') not in sys.path:
    sys.path.append(str(ROOT / 'yolov8'))  # add yolov5 ROOT to PATH
if str(ROOT / 'trackers' / 'strongsort') not in sys.path:
    sys.path.append(str(ROOT / 'trackers' / 'strongsort'))  # add strong_sort ROOT to PATH

ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

import logging
from yolov8.ultralytics.nn.autobackend import AutoBackend
from yolov8.ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages, LoadStreams
from yolov8.ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS
from yolov8.ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, SETTINGS, callbacks, colorstr, ops
from yolov8.ultralytics.yolo.utils.checks import check_file, check_imgsz, check_imshow, print_args, check_requirements
from yolov8.ultralytics.yolo.utils.files import increment_path
from yolov8.ultralytics.yolo.utils.torch_utils import select_device
from yolov8.ultralytics.yolo.utils.ops import Profile, non_max_suppression, scale_boxes, process_mask, process_mask_native
from yolov8.ultralytics.yolo.utils.plotting import Annotator, colors

from trackers.multi_tracker_zoo import create_tracker


@torch.no_grad()
def run(
        source='0',
        yolo_weights=WEIGHTS / 'yolov5su.pt',  # model.pt path(s),
        reid_weights=WEIGHTS / 'osnet_x0_25_msmt17.pt',  # model.pt path,
        tracking_method='strongsort',
        tracking_config=None,
        imgsz=(640, 640),  # inference size (height, width)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        show_vid=False,  # show results
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        line_thickness=2,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        hide_class=False,  # hide IDs
        half=False,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
        vid_stride=1,  # video frame-rate stride

):

    webcam, source = True, str(source)

    # Load model
    device = select_device(device)
    model = AutoBackend(yolo_weights, device=device, dnn=dnn, fp16=half)
    stride, names, pt = model.stride, model.names, model.pt
    imgsz = check_imgsz(imgsz, stride=stride)  # check image size

    # Dataloader
    bs = 1
    if webcam:
        show_vid = check_imshow(warn=True)
        dataset = LoadStreams(
            source,
            imgsz=imgsz,
            stride=stride,
            auto=pt,
            transforms=getattr(model.model, 'transforms', None),
            vid_stride=vid_stride
        )
        bs = len(dataset)
    else:
        dataset = LoadImages(
            source,
            imgsz=imgsz,
            stride=stride,
            auto=pt,
            transforms=getattr(model.model, 'transforms', None),
            vid_stride=vid_stride
        )
    model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz))  # warmup

    # Create as many strong sort instances as there are video sources
    tracker_list = []
    tracking_config = ROOT / 'trackers' / tracking_method / 'configs' / (tracking_method + '.yaml')
    for i in range(bs):
        tracker = create_tracker(tracking_method, tracking_config, reid_weights, device, half)
        tracker_list.append(tracker, )
        if hasattr(tracker_list[i], 'model'):
            if hasattr(tracker_list[i].model, 'warmup'):
                tracker_list[i].model.warmup()
    outputs = [None] * bs

    # Run tracking
    seen, windows, dt = 0, [], (Profile(), Profile(), Profile(), Profile())
    curr_frames, prev_frames = [None] * bs, [None] * bs
    for _, batch in enumerate(dataset):
        path, im, im0s, vid_cap, s = batch
        # visualize = increment_path(save_dir / Path(path[0]).stem, mkdir=True) if visualize else False
        with dt[0]:
            im = torch.from_numpy(im).to(device)
            im = im.half() if half else im.float()  # uint8 to fp16/32
            im /= 255.0  # 0 - 255 to 0.0 - 1.0
            if len(im.shape) == 3:
                im = im[None]  # expand for batch dim

        # Inference
        with dt[1]:
            preds = model(im, augment=augment, visualize=False)

        # Apply NMS
        with dt[2]:
            p = non_max_suppression(preds, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
            
        # Process detections
        for i, det in enumerate(p):  # detections per image
            seen += 1
            if webcam:  # bs >= 1
                p, im0, _ = path[i], im0s[i].copy(), dataset.count
                p = Path(p)  # to Path
                s += f'{i}: '

            curr_frames[i] = im0
            s += '%gx%g ' % im.shape[2:]  # print string

            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
            
            if hasattr(tracker_list[i], 'tracker') and hasattr(tracker_list[i].tracker, 'camera_update'):
                if prev_frames[i] is not None and curr_frames[i] is not None:  # camera motion compensation
                    tracker_list[i].tracker.camera_update(prev_frames[i], curr_frames[i])

            if det is not None and len(det):
                det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()  # rescale boxes to im0 size

                # Print results
                for c in det[:, 5].unique():
                    n = (det[:, 5] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # pass detections to strongsort
                with dt[3]:
                    outputs[i] = tracker_list[i].update(det.cpu(), im0)
                
                # draw boxes for visualization
                if len(outputs[i]) > 0:
                    for j, (output) in enumerate(outputs[i]):
                        
                        bbox = output[0:4]
                        id = output[4]
                        cls = output[5]
                        conf = output[6]

                        # if save_vid or save_crop or show_vid:  # Add bbox/seg to image
                        c = int(cls)  # integer class
                        id = int(id)  # integer id
                        label = None if hide_labels else (f'{id} {names[c]}' if hide_conf else \
                            (f'{id} {conf:.2f}' if hide_class else f'{id} {names[c]} {conf:.2f}'))
                        color = colors(c, True)
                        annotator.box_label(bbox, label, color=color)

            # Stream results
            im0 = annotator.result()
            if show_vid:
                if platform.system() == 'Linux' and p not in windows:
                    windows.append(p)
                    cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)
                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
                cv2.imshow(str(p), im0)
                if cv2.waitKey(1) == ord('q'):  # 1 millisecond
                    exit()

            prev_frames[i] = curr_frames[i]
            
        # Print total time (preprocessing + inference + NMS + tracking)
        LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{sum([dt.dt for dt in dt if hasattr(dt, 'dt')]) * 1E3:.1f}ms")

    # Print results
    t = tuple(x.t / seen * 1E3 for x in dt)  # speeds per image
    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS, %.1fms {tracking_method} update per image at shape {(1, 3, *imgsz)}' % t)


def main():
    run()

if __name__ == "__main__":
    main()

コードの説明は前回しましたので割愛します。

おわりに

今回は Yolov8_Tracking について説明しました。

Yolov8 で新しいモデル Yolov5su.pt が出ていたのは知りませんでした。
Yolov5s.pt と比較して、物体検知が途切れることなく検出できます。
Yolov8 は、学習及び検出も簡単なので、是非使用してみてください。

コメント

タイトルとURLをコピーしました